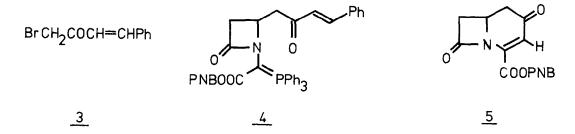

STUDIES ON 1-CARBADETHIACEPHEMS, PART II: REACTION OF 4-ACETOXY-2-AZETIDINONE WITH ALUMINIUM ENOLATES

C.W. Greengrass* and M.S. Nobbs Pfizer Central Research, Pfizer Ltd., Sandwich, Kent, U.K.

<u>ABSTRACT</u>. A procedure for the novel reaction of $\alpha\beta$ -unsaturated ketones (as zinc-free aluminium enolates) with 4-acetoxy-2-azetidinone, giving products 2, is reported. A 1-carbadethia-2-oxocephem derivative 5 has been prepared from compound 2b.

Our synthesis of 1-carbadethiacephem derivatives described in the preceding communication¹ relies on the generation of a reactive α -ketoaldehyde by ozonolysis of a suitable $\alpha\beta$ -unsaturated ketone. A recent publication² from the Sankyo group suggested that a suitable intermediate for our synthesis might be prepared by the reaction of an $\alpha\beta$ -unsaturated aluminium enolate with 4-acetoxy-2-azetidinone, <u>1</u>. However, we have shown that success with this method when applied to $\alpha\beta$ -unsaturated ketones requires several significant modifications as described below.

We confirm the published yield (33%) of $\underline{2a}$ obtained from the reaction of 4-acetoxy-2-azetidinone with bromoacetophenone in the presence of zinc and diethylaluminium chloride. However, when bromomethyl ketone $\underline{3}$ was used, no β -lactam product was obtained. Alternative methods of generating suitable aluminium enolates were tried and we report that enolates generated from $\alpha\beta$ -unsaturated methyl ketones using diethylaluminium 2,2,6,6-piperidide³ react with 4-acetoxy-2-azetidinone to give the required C-alkylated products $\underline{2}^4$ (see table). Moreover, inverse addition (aluminium enolate added to $\underline{1}$) at low temperature results in a dramatic yield improvement. Addition of cuprous cyanide (10 mole %) gave a further enhancement of yield. This procedure was also successful with acetophenone and gave a better yield of $\underline{2a}$ than the bromomethyl ketone method. Interestingly, addition of Zn (II) (ZnCl₂, 10 mole %), which would be present using the Sankyo procedure, resulted in the formation of a very low


5339

yield of 2b (13% by inverse addition method).

 	R	Direct Addition %	Inverse Addition CuCN added %
2a	Ph	14	42
25	 -CH=CH-Ph	16	43
2c	-CH=C(CH ₃) ₂	6	15

Table. Yields of 4-substituted azetidinones

The most promising intermediate for our synthesis was <u>2b</u> which was converted to <u>4</u> (58%) and <u>5¹</u> (55%) in analogy to Part I. Thus the preparation of <u>5</u> is essentially a three step process from 4-acetoxy-2-azetidinone.

Typical Procedure for Aluminium Enolate Reaction

To a solution of 2,2,6,6-tetramethylpiperidine (5.38 g, 39 mmole) in THF (140 ml) at 0° C under N₂ was added nBuLi (1.0 equiv.). After 30 minutes, Et₂AlCl (1.0 equiv. 25% solution in hexane) was added dropwise and stirring was continued for a further 30 minutes before cooling to -78° C. To this was added over 10 minutes a THF (25 ml) solution of 4-phenyl-3-buten-2-one (1.0 equiv.). After stirring at -78° C for 1 hour, the resulting solution was added dropwise over 45 minutes to 4-acetoxy-2-azetidinone (3.3 g, 26 mmole) and CuCN (225 mg, 2.6 mmole) in THF (100 ml) at -78° C. Stirring was continued at -78° C for 2 hours before slowly warming to 0° C (2 hours). 0.5N HCl was added, then EtOAc (800 ml) and the organic phase separated. Column chromatography (SiO₂, EtOAc) gave <u>2b</u> in 43% yield (2.36 gms, mp 112-114°C from EtOAc).

References

- 1. C.W. Greengrass and D.W.T. Hoople, Preceding Communication.
- 2. S. Oida, A. Yoshida and E. Ohki, Chem. Pharm. Bull., 28, 3494 (1980).
- 3. H. Nozaki, K. Oshima, K. Takai and S. Ozawa, Chemistry Letters, 379 (1979).
- 4. All new compounds had spectral properties in accord with their assigned structures.